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The installation of large-eddy breakup devices (LEBUs) or ‘flow manipulators ’ in a 
turbulent boundary layer over a rigid plane surface is known to lead to reductions 
in skin-friction coefficient, turbulence intensity and fluctuating Reynolds stress. We 
investigate the effect of such devices on the surface pressure spectrum and the far- 
field sound radiation. A model problem, in which a two-dimensional elliptical vortex 
is convected past a LEBU, is solved analytically in the low-Mach-number limit. The 
main noise source mechanisms are identified in this idealized problem and we go on 
to obtain scaling laws for the sound produced by a turbulent boundary-layer flow 
over a LEBU. The introduction of a LEBU reduces the strength of the Lighthill 
quadrupole source terms, but it produces an additional dipole source. However, the 
pressure fluctuations in this dipole field decay rapidly with distance from a LEBU, 
and we find that an array of LEBU’s could have a beneficial effect on the flow noise 
for radian frequencies which are large in comparison with c/3OA, where c is the sound 
speed and A denotes the boundary-layer thickness. At  lower frequencies the LEBUs 
are predicted to increase the flow noise. 

1. Introduction 
Experiments have shown that large-eddy breakup devices (LEBUs) or ‘flow 

manipulators ’, consisting of short, thin plates placed in the turbulent boundary layer 
above an extensive plane wall, can reduce the wall skin-friction coefficient. Since the 
pioneering work of Hefner, Weinstein & Bushnell (1979) and Corke, Guezennec & 
Nagib (1979), this reduction in skin friction has been confirmed in many laboratory 
experiments throughout the world. See Nguyen et al. (1984), Bandyopadhyay (1986) 
or Wilkinson et al. (1987) for reviews of this experimental work. Typically a 
maximum local skin-friction reduction of between 15 and 40 % is achieved with some 
reduction in skin friction persisting over a downstream distance of lOOA-15OA, where 
A denotes the boundary-layer thickness. If the wall is long enough in the streamwise 
direction to exploit this skin-friction reduction and the manipulator is sufficiently 
thin, the total drag on both the wall and the manipulator may be less than that on 
the wall without the manipulator. Plesniak & Nagib (1985) undertook a systematic 
optimization of the manipulator geometry. They found that a tandem arrangement 
of two plates, one downstream of the other, gave best results when each plate had a 
length of 1 . l A  and was positioned at a height between 0.44 and 0.84 above the wall. 
The performance of the manipulator was relatively insensitive to the streamwise 
separation between the plates. 

There is a great discrepancy between the reported net drag reductions, with 
reductions varying from as much as 30% (Plesniak & Nagib 1985) to nearly zero 
(Nguyen, Savill & Westphal 1986). It is clear that the net drag reduction is strongly 
dependent both on the manipulator geometry and on the characteristics of the 
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turbulence in the oncoming flow. However, all the experimenters agree that 
significant local reductions in skin-friction coefficient occur downstream of 
manipulators. Such a reduction has even been measured on an aircraft in flight 
(Bertelrnd 1986), and a modest drag reduction has been obtained by equipping a flat 
plate in a towing tank with flow manipulators (Sahlin, Alfredsson & Johansson 1986). 

The reduction in skin-friction coefficient downstream of a flow manipulator is 
accompanied by a corresponding decrease in turbulence intensity, turbulent 
Reynolds stress and integral lengthscale (Westphal 1986 ; Bonnet, Delville & Lemay 
1987 ; Coustols, Cousteix & Belanger 1987). The streamwise turbulence intensity and 
fluctuating Reynolds stress relax back to their unmanipulated values some fifty 
boundary-layer thicknesses downstream of the LEBU, but the attenuation in the 
normal component of the turbulence intensity persists for a streamwise length of 
about 1504 (Guezennec & Nagib 1985). It is these fluctuating velocities that generate 
sound in a turbulent boundary layer over a plane wall (Ffowcs Williams 1965) and we 
might hope that a reduction in turbulence intensity might lead to a corresponding 
reduction in noise. Such an argument is clearly an over-simplification. Although the 
introduction of a LEBU might reduce the strength of the quadrupole sources, the 
LEBU exerts unsteady forces on the fluid and leads to new dipole sources. In  general 
in a low-Mach-number flow the sound field due to dipole sources is stronger than that 
due to quadrupoles. However, these dipoles produce a centred sound field decaying 
with distance from the LEBU, while the quadrupole sources are distributed 
throughout the boundary layer. If the turbulence modification persists over 
sufficient distances downstream of the LEBU for the additional dipole sound field to 
have decayed to a negligible level before the turbulence recovers to its unmanipulated 
form, the introduction of a LEBU could have a beneficial effect on the sound field. 
Whether a LEBU leads to  an increase or a decrease in sound level depends on the 
relative importance of the additional dipole and the modification to the quadrupole 
source strength. An encouraging experimental result has been reported by Beeler 
( 1986). He measured the pressure spectrum 70 boundary-layer thicknesses 
downstream of a LEBU in a turbulent boundary layer and found that the presence 
of the manipulator reduced the unsteady pressure. 

Simple theory can explain the reduction in fluctuating velocities produced by a 
flow manipulator. Dowling (1985) considered an incident line vortex convected past 
a LEBU consisting of a single short, flat plate. Vorticity shed from the trailing edge 
of the manipulator was found to  cancel the effect of the incident vortex, leading to 
a significant reduction in velocity fluctuations near the wall. Atassi & Gebert (1987) 
went on to consider an incident vorticity wave and an aerofoil-shaped manipulator. 
Once again shed vorticity reduced velocity fluctuations downstream of the LEBU. 
Balakumar & Widnall (1986) considered a tandem arrangement of two plates. When 
the two plates are many chord lengths apart, they produce a reduction that is the 
square of that for a single plate. 

The oncoming flow in these theories satisfies Taylor’s hypothesis and so is silent in 
the absence of a LEBU. The models are therefore too crude to investigate the effect 
of a turbulence manipulator on flow noise. In  this paper we extend the theory of 
Dowling (1985) by considering a cylindrical vortex of slightly elliptical cross-section 
convected on a uniform mean flow over an infinite plane wall. Such a vortex rotates 
under the influence of its own velocity field (Lamb 1932). In  a slightly compressible 
fluid it emits sound and has been used as a basic model of a two-dimensional eddy 
by Howe (1975). We investigate the way in which the sound field of such an eddy is 
altered as it is convected past a turbulence manipulator consisting of a single, short, 
flat plate. 
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In a low-Mach-number flow, the flow field in the vicinity of a source is essentially 
incompressible. We solve the inner incompressible problem for the elliptical vortex 
in $2 and in particular determine the pressure i t  induces on the plane wall. I n  the 
absence of a manipulator the unsteady pressure field is proportional to the square of 
the vortex strength, r, and decays with the inverse-square of distance from the 
vortex core. When a LEBU is placed a t  a height h above the plane wall in a flow 
of mean velocity U,, there is an additional term in the pressure perturbation 
proportional to r U ,  h and decaying with the inverse-square of distance from the 
manipulator. For a vortex representing weak levels of fluctuation, r is small in 
comparison with U,h and the LEBU leads to an enhancement of near-field 
pressures. The augmented wall pressure is most intense directly underneath the 
LEBU, the maximum being below the 20% chord point. 

Once the incompressible inner field has been determined the theory of vortex 
sound (Powell 1964; Howe 1975) can be used to determine the distant compressible 
sound field. This is done in $3. In  the absence of the LEBU this pressure perturbation 
has the form appropriate for a quadrupole source and is proportional to the small 
eccentricity, E ,  of the vortex core. All vortical elments satisfying Taylor’s hypothesis 
are silent. When the vortex is convected past a LEBU even the vorticity that 
convects without change generates sound as i t  exerts an unsteady force on the 
LEBU. In free space the unsteady lift on the plate would be an effective dipole (Howe 
1976), but for our geometry the equal and opposite image of this dipole in the plane 
wall completely cancels any surface pressure fluctuations this source might produce. 
It is apparent from the work of Katzmayer (1922) and Jones (1957) that there is an 
unsteady suction on the leading edge of the plate proportional to the square of the 
incident velocity perturbation. We find that this tangential dipole source leads to 
significant surface pressures. The installation of an LEBU enhances the distant 
pressure field of the single two-dimensional eddy by a factor s-lM-l, where M = U,/c 
is the mean flow Mach number. I n  underwater applications the Mach number is very 
low (of the order of 0.01) and so this represents a considerable augmentation of the 
sound field of a single eddy. 

This exact problem gives us sufficient physical insight to identify the main sources 
of sound when a LEBU is placed in a turbulent boundary layer. Now, rather than 
the single two-dimensional vortex considered in 2 and 3, there are convected three- 
dimensional eddies distributed throughout the boundary layer. In  $4  we obtain 
scaling laws for the surface pressure spectrum under such a turbulent flow. We find 
that a LEBU produces an additional centred dipole field, but that a t  large distances 
from the LEBU this involves smaller pressure fluctuations than those due to the 
extensive quadrupole sources distributed throughout the boundary layer. 

A LEBU reduces the fluctuating velocity over a downstream extent of some 
1504, and a global reduction in quadrupole source strength could be obtained by an 
array of LEBUs with a streamwise separation of about 1504. We predict that such 
an array could only lead to local reductions in the surface pressure spectrum for 
radian frequencies much greater than c/304. 

2. The inner incompressible flow field 
2.1. I n  the absence of a LEBU 

Consider the model of a turbulent eddy in a boundary layer illustrated in figure 1. 
A two-dimensional vortex with a slightly elliptical core is convected parallel to  a 
rigid plane wall yz  = 0 in a uniform mean flow (U,, 0,O). At time t = 0, the centre of 
the vortex is at a height d above the wall and we shall denote its streamwise position 
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I:.... ..::, ....... 
Vortex core with centre (Uv I, d )  - 
and edge R ,  = u(l+ecos(28,-~wt)) 

FIGURE 1.  An elliptical vortex convected parallel to the rigid wall y2 = 0. 

by y1 = 0. Let us suppose that, at this time, the vorticity has a uniform value 
(0, 0, w )  within the vortex core and that the outer edge of the core is described by 
R, = u(1 +scos20,), where R, and 0, are polar coordinates measured from the 
vortex centreline. In a boundary-layer flow w would in general be negative. E is a 
small parameter describing the eccentricity of the ellipse. 

In unbounded space in an otherwise quiescent fluid, Lamb (1932) has shown that, 
to first order in E ,  such a vortex rotates about its axis with angular velocity @. The 
vorticity distribution a t  a general time t is therefore given by 

o = wkH[a+cacos (2Ql-&t)-R,], (2.1) 

where k is a unit vector in the 3-direction and H(x) is the Heaviside function. The 
associated velocity field, in polar coordinates based on the vortex axis, is 

v R  = -~wRlsin(2Q,-&t), vg = + R l - ~ ~ w R 1 ~ o s ( 2 Q 1 - ~ t )  (2.2) 

inside the vortex core, 

r era2 
sin (20 ,  -&t), we = - +-COS (2Q,-&t) (2.3) 2nR1 2nR: VR = -- 2nRi 

outside the vortex core, where r = na20 is the total vortex strength and terms of 
order s2 have been neglected. 

In our problem there are additional terms in the velocity field due to the mean flow 
and the image of the vortex in the hard surface. These cause the vortex axis to move 
with a velocity (U,,O,O),  where U, = Um+r/4nd. If a ld  is small, this velocity is 
uniform over the vortex core and the vortex convects without dispersion. The 
vorticity distribution therefore continues to have the same form as in (2.1), provided 
R, and 0, are measured from the instantaneous position of the vortex axis and we 
can use Lamb's result to write the velocity field in yz 2 0 :  

+&OR,( - sin Q,, cos Q,, 0) - $ewR,(sin (0, -&t), cos (8, -+t), 0) 
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inside the vortex core, 

= (U,,O,O) 
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r &a2 
2% 2nR; 

+- ( -sin O,,  cos O,, 0) +- ( -sin (30,  - h t ) ,  cos (30, -&t),  0) 

era2 
2 d 2  2nR; 

( - sin O,,  cos 0,, 0) -- (- sin (30, + & w t ) ,  cos (30, + &t), 0) (2 .5)  
r -- 

outside the vortex core, where R, and 0, are polar coordinates measured from the 
instantaneous position of the axis of the image vortex. This velocity distribution will 
be used in $3  to evaluate the sound source terms, but for now we shall go on to 
determine the inner incompressible pressure fluctuations. 

The near-field pressure perturbations can be calculated from the unsteady form of 
Bernoulli’s equation : 

(2 .6)  

The dot denotes a time derivative, v is the magnitude of v ,  and po is the fluid density. 
It is apparent from (2 .5)  that outside the vortex core the velocity potential 4 is given 

p’ = -Po q5 + k0( U L  - v2). 

1 r by 
q5 = U m y 1 + ~ ( Q 1 - Q 2 ) +  . (2.7) 

The pressure fluctuations on the plane surface y ,  = 0 are of particular relevance since 
they would be detected by a wall-mounted sonar array. There, 

R ,  = R, = [ ( y , - U , t ) 2 + d 2 ] ) ,  0, = -8, with tan@, = - d / ( y , - U , t ) ,  

the velocity potential simplifies, and differentiation with respect to time shows that 

The normal velocity v2 of course vanishes on y ,  = 0, while the streamwise velocity 
reduces to r d 

v ,  = urn+- 

Substitution for v and 4 in (2 .6)  shows that the pressure perturbation on the wall is 

where 

p o r 2 C O S 2 ~ l + ~ ~ ~ ~  ( 2 0 , - + t )  
( y ,  - u, t)2+d* P’(Yl,O? Y39 t )  = , 

( y ,  - u, t ) ,  - d 2  
( y ,  - u, t ) 2  + d 2  

cos20, = 

(2.10) 

The unsteady pressure is evidently proportional to the square of the vortex strength 
and decays with the inverse-square of distance from the axis of the vortex. 

2.2.  With a LEBU 
The way in which the insertion of a flow manipulator or LEBU modifies this flow field 
will now be investigated. The geometry is illustrated in figure 2. A flat plate LEBU 
of chord 21 and with infinite span is placed a t  a height h above the plane wall in the 
two-dimensional flow. Let us denote the position of the vortex centreline a t  time t by 
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Vortex core with centre y&) - 
y,(s, t )  = vorticity/unit length -21- 

4 
h - 

\\\\\ \\ \ \ \ \ \ \ \T\\ \ \ \ \ \ \ \ \ \  

Image of plate 
- 

FIGURE 2. An elliptical vortex convected past a LEBU. 

y,(t). At t = 0, y, = ( O , d ) ,  that is the vortex axis is a t  a height d above the wall, or 
equivalently a t  a distance b = d - h above the LEBU. At this time the outer edge of 
the vortex core is again described by R, = a + EU cos 20,,  where R, and 8, are polar 
coordinates based on the vortex axis. 

We shall assume that the Reynolds number is sufficiently high for the effects of the 
fluid’s viscosity to be ignored explicitly in the analysis. The dominant influence of 
viscosity will, however, be implicitly included through the application of the Kutta 
condition at the trailing edge of the LEBU. The effect of the LEBU can then be 
represented by a vorticity distribution along the plate; f(yl, t ) ,  -1 < y1 < 1. The 
function f(y,, t )  is equal to the jump in v1 across the plate and is to be determined 
from a condition of no normal velocity on the plate and the Kutta condition. As in 
Dowling (1985) it is convenient to expand f(y,, t )  as a Glauert series and we write 

(2.11) 

where cos 8 = - yJl. The A ,  term has the required form for the singularity a t  the 
leading edge of the plate. 

As the circulation around the plate changes as a function of time, vorticity is shed 
unsteadily into the wake, where it convects with the flow. We measure arclength 
along the wake by s and denote the vorticity per unit length of wake by yw(s, t )  and 
its position by yw(s, t ) .  Kelvin’s circulation theorem requires that the total circulation 
around the plate and wake should vanish: 

(2.12) 

Provided that the size of the vortex core a is small in comparison with the 
distances d and b ,  the vortex continues to rotate with angular velocity ~ as it 
convects without dispersion. The vorticity in the oncoming vortex therefore has the 
form shown in (2.1), while there is additional vorticity in the wake of the plate. Hence 

m 

o = wkH[a + ea cos (20, -$t)  -R,] + k 1 yw(s, t )  Sb -yw(s, t)] ds (2.13) 
J S-o 
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for y2 2 0. Inclusion of the effects of the LEBU and its wake into (2.4) shows that 
within the vortex core the velocity field is given by 

+&R1(-sin0,,cos0,,0) 

-&wR,(sin ( 0 , - & t ) ,  cos(@,-&t),O) 

I r m  

Outside the vortex core an extension of (2.5) shows that the corresponding velocities 
are 

udv, t )  = (Urn, 0,O) 

r era2 
+-(-sin @,, cos @,, 0) +-(-sin (30,  -+t), cos (30 , -$ t ) ,  0) 

2xR, ZTER! 

(2.15) 

where the vector E(y I y’ )  is defined by 

IY’) = ( -  (Yz--Y31 Yl-Y;IO) l ( (Yl  ( Y 2 - - d f 2 ) .  

The vorticity distribution described in (2.13) and the velocity field in (2.14) and 
(2.15) will be used in $ 3  to calculate the pressure fluctuations in the distant sound 
field. But first we determine the local pressure perturbations on the plane wall near 
the manipulator, where the flow is essentially incompressible. These near-field 
pressures can be calculated from Bernoulli’s equation : 

p‘ = - p o q 5 + ~ o ( u : - v 2 )  

as given in (2.6). 

has the form 
It is apparent from (2.15) that well outside the vortex core the velocity potential 

where 0 ( y  I y’) is defined by 

tan@ = (Y2-Y;)/(?/l-Y;) with cos@ = ( Y 1 - Y ’ , ) / ( ( Y 1 - Y ; ) 2 + ( Y 2 - Y ~ ) 2 ) ~ .  

We now linearize in the strength of the oncoming vortex. Then r, f and yw are all 
small and any terms multiplying them need only be evaluated to lowest order in 
r. Explicitly we assume that 1 + T / U m d  >> a / b  >> c. Then the incident vortex and 
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the vorticity in the wake convect with the mean velocity. Hence y ,  = ( U , t , d ) ,  

(2.17) 
y,(s, t )  = (s+ I ,  h)  and 

The velocity field and the velocity potential simplify for this vortex of linear 
strength, The details are given in Appendix A, where it is shown that substitution for 

aYW y = - u - .  
00 as W 

u and q5, from (2.15) and (2.16) respectively, into the unsteady Bernoulli equation 
(2.6) leads to  

P ’ ( Y l , O ,  Y3, t )  = -7 P . h l ~ ~ g ( y ; , t ) + u , f ( y ; , t ) d y ; ,  (Y1- + h2 (2.18) 

after linearization in r. A new function g(yl, t )  has been introduced in this expression. 
It is defined by 

g(Y19 t )  = p ( Y L  4 d d .  (2.19) 

The surface pressure evidently depends on the functions f and g and decays with the 
inverse square of distance from the plate. For a complete description it only remains 
to calculate f and g. 

In (2.11) f was expanded as a Glauert series. The function g can be expressed in 
terms of the same coefficients. After substitution for f in terms of its series and 
evaluation of the integrals, (2.19) leads to 

1 
41 

g(y l ,  t )  = - ( ( Y ~ + I ) ~ ~ ( z ,  t ) - ~ A , ( ~ + s i n ~ ) + t ~ A , ( ~ - t s i n 2 8 )  

sin (n - 1) 0 sin (n + 1) 19 m 
- 

n-1 nfl 
+ c ;rAn( 

n-2 

where cos0 = - yJ1. 
The functions A,(t) are to be determined from the condition of zero normal 

velocity on the plate, which after linearization of (2.15) leads to the following integral 
equation for f: 

where J denotes a principal value, and b = d - h is the perpendicular distance between 
the LEBU and the axis of the vortex a t  time t = 0. Terms of order sTu2/b3 have been 
neglected. This is precisely the equation solved in Dowling (1985) and we need only 
quote the results derived there. It was found to  be convenient to  take Fourier 
transforms with respect to a non-dimensional time, Urn t l l .  With A,(Q) defined by 

(2.22) 

Dowling showed that the integral equation (2.21) leads to an infinite set of linear 
coupled equations for the Glauert coefficients A, (see Dowling 1985, equation (3.9)), 

m *  

A n  -Ao(Co, n + Cl, n )  + A m ( C m - 1 ,  n - C m + l ,  n) + (Ao -A1) S n  
m--I 

I, (2.23) - - - 2i-n+lJn(Q) [e-olbl/l- e-R(b+Zh)/l  
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for n 2 0 and positive 0. In this expression 

1 "  
Cm, ,  = ;Jo cosnBEm(-cos8)d8, 

S, = -[ iQ s, + f li (1 + z) E,(z) dx + e-iR 1 W eiRz b,(s) - [ ( x 2  - )'- "1') dx] 
("2- 1); 5 

1 -iQ 1 

dB' 
cosme'(x+cosO) 

(x + cos B'), + 4h2/E2 
with 

and so=O,  s l= -1 ,  s,=[(-1)"(2n2-l)+1]/2n(n2-1) for n 2 2 .  T h e d ,  decay 
rapidly as n becomes large, and Dowling determined these coefficients approximately 
by truncating the series after N terms. Then the first N eguations in (2.23) could be 
solved numerically to give the N unknowns Ao,Al, ..., A,-,. In addition Dowling 
showed that the Kutta condition implied that 

(2.24) 

so that knowledge of the A, completely specifies the functions f and g via equations 
(2.1 1) and (2.20) respectively. 

When h is sufficiently large and b is positive, the plate is far enough from the wall 
for images in the plane wall to have negligible effect on the circulation around the 
plate. The plate then responds to the passage of the vortex as if it were in unbounded 
space, and the coefficients A,, can be calculated analytically. If h 4 $! the coupling 
coefficients C,,,n are small, and the equations for d, in (2.23) decouple to give, in 

(2.25) 

(2.26) 

for 52 > 0. 

Fourier transforms of (2.18) we find that 
We now return to the evaluation of the surface pressure fluctuations. Taking 

(2.28) 

This integral only involves known functions, since f and g have been expressed in 
terms of the Glauert coefficients A ,  via (2.11), (2.20) and (2.24), while the A ,  are 
determined by a numerical solution of (2.23). It is possible to evaluate the integrals 
involved in (2.28) analytically but the expressions are so cumbersome that a 
numerical integration is preferable. Figure 3 shows the variation of $(y, 52) with 
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position along the wall for various values of 52 and two values of h/l. At each 
frequency the pressure perturbation is in phase all along the wall, as is appropriate 
for an incompressible flow where information travels instantaneously. The maximum 
pressure perturbation occurs a t  the same streamwise location for all frequencies. For 
h = I this is at y, = -0.61, i.e. directly below the 20% chord point. For h = i l ,  the 
maximum pressure occurs slightly further upstream a t  y1 = -0.71. The figure shows 
that, as the frequency increases, the amplitude of the pressure oscillations first 
increases and then decreases. For the values of h in the figure, the largest pressure 
response occurs for non-dimensional frequencies 52 in the range 0.6 < 52 < 2.0. 
(Frequencies have been non-dimensionalized with respect to Um/Z.) 

The expression for the surface pressure simplifies a t  many chord lengths from the 
plate. When IylJ is large in comparison with 21, (2.28) becomes 

Whenfand 6 are replaced by their series expansions (given in (2.11) and (2.20)) the 
integrals can be evaluated to show 

+~x:r(d,-d,) (l-i52)+$fi52(do-dz)]. (2.30) 
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-90 t I -180 1 
FIGURE 3. The variation of the Fourier transform of the pressure perturbation with position along 
the wall for various non-dimensional frequencies, 6 = 0.11 and (a) h = I ,  (6) h = 0.51: -, 
calculated from (2.28) ; --------, calculated from the approximate form for moderate or large h/Z in 
(2.32). 

After substitution for i(2, SZ) from (2.24) this becomes 

If the plate is sufficiently far above the wall for the isolated plate results in 
(2.25)-(2.27) to be appropriate, the coefficients can be replaced by their analytical 
forms. After some algebra this leads to 

This approximate form for the Fourier transform of the pressure is plotted in figure 
3 for comparison with the full solution. The agreement is surprisingly good even 
though lyll and h are not particularly large. 

This approximate expression for $(yl, 0, ya, s2) can be written compactly by noting 
that, since from (2.26) 

(2.33) 
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-2 - 1  I 

FIGURE 4. Plots of A,(t) for moderate or large h/Z. (a) b = 0.51, (b )  b = 0.251, (c) b = 0.11. 

The form of Ao(D) is so simple that it is feasible to invert the Fourier transform to 
determine the time history of A , :  

+ sin r?) Irn$(Q)] dD, (2.34) 

where we have used the fact that  A,(-Q) is the complex conjugate of d,(D). For 
52 > 0, Ao(D) is given in (2.26). The integral was evaluated numerically for three 
values of b and the results are shown in figure 4. Inversion of (2.33) leads to 

(2.35) 

The pressure perturbation evidently has the same phase all along the wall. We see 
from figure 4 that this pressure disturbance reaches its maximum just before 
t = --1/Um, which is the time the vortex passes the leading edge of the plate. 

The function Ao(t) is seen to be of order unity, and a comparison of the pressure 
with and without (see (2.10)) a LEBU shows that the near-field incompressible 
fluctuations are increased by a factor U, h l r .  The incident vortex produces unsteady 
flow velocities of the order of T / h  and, since i t  models low-intensity turbulence, this 
is much smaller than the free-stream velocity U,. The presence of the LEBU 
therefore leads to a considerable enhancement of the near-field pressures. In the next 
section we shall investigate how the acoustic far field is affected. 
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3. The outer acoustic flow field 
The effects of compressibility become important a t  large distances from the vortex 

and the LEBU. In this section we shall calculate the pressure fluctuations in this 
acoustic field. The vorticity distribution was determined in $2 and it is convenient 
to use a theory of sound generation that places emphasis on vorticity as an acoustic 
source. Howe (1975) has shown that, in a low-Mach-number flow with uniform and 
constant entropy, the equations of fluid motion reduce to 

where c is the speed 

and outside vortical 

($&-V2)B = div (a x v ) ,  

of sound. The variable B is defined by 

B = dp/p+&? J 
regions reduces to 

In  the acoustic far field. linearization shows that 

B'= P' -. 
(3.4) 

Po 
for a low-Mach-number flow. 

I n  order to solve (3.1) we introduce a Green function G(y, 7 1 x ,  t )  defined by 

($-&-V2)G = S(y-x, t--7) in y2 > 0 (3.5) 

together with aG/ay, = 0 on yz = 0 and a radiation condition a t  infinity. This is the 
familiar half-space Green function : 

qt -7- Ix -yl/c) 6(t - 7- (x-y*l/c) 
4nIx-y*( 4nIx--YI 

G ( Y , ~ I x , ~ )  = + 
y* is the image of the point y in the surface yz = 0, y* = (yl, - y2, y3). For a position 
x in the far field, where R = (x: +xi): is large in comparison with (y:+ y$, G reduces 
to  

with r = (x -  y3kl. The repeated suffix a is summed over 1 and 2. When the source 
is compact in the y1 and y2 directions, the argument of the 6-functions can be 
expanded as Taylor series. The first three terms in this expansion yield 

A straightforward algebraic rearrangement shows that 
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Equations (3.1) and (3.5) may be used to simplify the left-hand side of this identity 
togive 

BS(X-~,~-~)-GV.(COX V) = -V.(BVG-GVB). (3.10) 

When there is a LEBU we shall surround it  by a fixed control surface S with normal 
n, as shown in figure 2. Then integration of (3.10) over the region external to S in 
y2 2 0 and over all times leads to 

B(x, t )  = - V G * ( ~ ~ x v ) d ~ y d ~ -  B-dSd7. (3.11) 

We have used the fact that aG/an vanishes on y2 = 0 and that, since the surfaces are 
rigid, d B / h  is zero both on the LEBU surface S and on the plane wall y2 = 0. 

I n  our two-dimensional model problem, the vorticity is only in the y3 direction, 
o = o3 k. After substitution for G from (3.8), the &-functions can be used to evaluate 
the r-integrals. We then find that in the far field 

I Is :: 

where the square brackets denote that the function they enclose is to be evaluated 
a t  retarded time t -r /c,  with r = Ix- y3 kl. 

Finally (3.3) and (3.4) may be used to rewrite B in terms of the velocity potential 
on S and in terms of the distant pressure perturbation in the far field. This leads to 

Sources of sound are concentrated in the vortical regions and on the surface of the 
LEBU. At low Mach numbers the flow in this inner region is incompressible and has 
been calculated in $2. 

3.1. I n  the absence of a LEBU 

When there is no turbulence manipulator, the expression for the distant pressure in 
(3.13) simplies to just the volume integrals: 

In this case the vorticity distribution is given by (2.1). It is only non-zero within the 
vortex core. The form for the velocity field v within the core is given by (2.4) and 
straightforward integration shows that 

1’2 O3 dyl dy2 = o? 
r2 

~ 1 ~ 2  ~3 dy1 dy2 = - ( I  + E cos @ w t )  s 8 R  

and 



Effect of lurge-eddy breakup devices on flow noise 

The far-field pressure in (3.14) is therefore equal to 

207 

(3.15) 

For large wR/c, where R = (x: +xi$, the y3 integral may be evaluated by the method 
of stationary phase and we finally obtain 

(3.16) 

This form for the pressure prturbation is typical of that due to two-dimensional 
quadrupoles. It decays with the inverse-square-root of distance from the source and 
has a directivity described by (x,"-xi)/R2. Note that the pressure perturbation is 
proportional to 8: the vortex only generates sound owing to its eccentricity. 

Howe (1975) determined the acoustical field of an elliptical vortex in free space. He 
found that it was equivalent to that produced by rotating quadrupoles. Equation 
(3.16) can be recovered from Howe's result by a superposition of the field of an 
isolated vortex with that due to image quadrupoles in the hard wall. 

3.2. With a LEBU 

The acoustic field generated as the vortex passes over a LEBU is described by 
(3.13), with 0, tf and as given in (2.13)-(2.16). The pressure perturbation may be 
conveniently decomposed into dipole and quadrupole fields, denoted by pA(x, t )  and 
pb(x,  t)  respectively, with 

(3.17) 

and 

(3.18) 

As before T = (x-y, kl and the square brackets denote that the function they enclose 
is to be evaluated at retarded time t - r / c .  In the absence of a LEBU, we found the 
vortex sound to be quadrupole. The introduction of the LEBU leads to new dipole 
sources. 

The integrals in (3.17) are evaluated in Appendix B, where it is shown that the 
strength of the dipole is proportional to A:(t) (Ao(t) is the coefficient of the singular 
term in the Glauert series). This leads to a sound field 

(3.19) 

This dipole sound field is proportional to r2, that is it depends on the square of the 
velocity fluctuations induced by the vortex. For a vortex producing weak velocity 
fluctuations r is small, and the Glauert coefficient, Ao(t),  in (3.19) can be evaluated 
from the linear theory in $2. 

We now turn our attention to the quadrupole sound in (3.18), but since we already 
have a second-order dipole we shall only evaluate the quadrupole source strength to 
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first order in r. The integrals are again evaluated in Appendix B, where we find that 
the quadrupole is in the 2-2 direction, with an associated pressure field 

The function g(y,,t) is defined in (2.19). 

collected together they lead to a distant pressure perturbation of the form 
When the dipole and quadrupole contributions in (3.19) and (3.20) respectively are 

Po r2 a dy3 p ’ ( x ,  t )  = ____- 
16cZ at --03 r2 

This expression has a simple physical interpretation. It is shown in Appendix C that 
the plate exerts a thrust p o x P A i ( t ) / 8 Z  per unit spanwise length on the fluid. The 
dipole term in (3.21) describes the acoustic field generated by this unsteady 
streamwise force. In addition there is a linear lift force in the 2-direction of strength 

1 

Po J-, M Y , ,  t) + UWffYl7 t ) )  dY1 

per unit spanwise length. I n  free space this lift produces a dipole sound field (Howe 
1976). But here the image of this normal force in the adjacent plane surface is equal 
and opposite and together they lead to the quadrupole term in (3.21). 

The y1 integral in (3.21) was evaluated in $2 (see (2.29)-(2.33)). In  particular it was 
shown that, if the LEBU is sufficiently far above the plane wall for the flow in the 
vicinity of the plate to  be uninfluenced by images in the wall, 

M Y l , t ) +  Uwf(Y11 t)>dY1 = -w?mAo(t).  
L 

(3.22) 

When this relationship is used in (3.21), the expression for the distant pressure 
perturbation simplifies to 

I-, 
A:(t -r/c) po  xi ThU, 

p’(x,  t )  = ___- r2 dy3- 4c2 dy,. (3.23) 
iaCz at 

Ao(t )  has been plotted in figure 4. It is typically of order unity and varies over a 
timescale l/Um. The quadrupole term in (3.23) therefore leads to pressure fluctuations 
that are a factor MU, h / r  smaller than those induced by the dipole. Since the mean 
flow Mach number is very low in underwater applications, this factor is small. 
Moreover, the quadrupole sound vanishes identically on the surface of particular 
interest’, x2 = 0. The distant pressure field is therefore dominated by the dipole term 
in (3.23): 

P ’ k  t )  = -&$%(f-r/c) dY,. (3.24) 

The contribution to the sound field from unit spanwise length of LEBU is 
proportional to dA:/dt. For moderate and large values of h, Ao( t )  has the form given 
by (2.26) and (2.34) and the derivative dAi(t)/dt is plotted in figure 5. This source 
strength becomes intense for small values of b (the perpendicular distance between 
the LEBU and the axis of the vortex a t  time t = 0). 

pox1r2 i a 
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FIGURE 5. Plots of dA:(t)/dt for moderate or large h/Z. (a) b = 0.51, ( b )  b = 0.251, (c )  b = 0.11 

The y3 integral in (3.24) may be rewritten using the technique introduced by 
Ffowcs Williams (1969). First we change the integration variable from ys  to the 
retarded time r = t - r /c  to obtain 

(3.25) 
a 
--Ai(r) dr,  

1 -RlC 
Po 2 1  r2 p'(x , t )  = ~ 

8c2Z la ((t-r)2-R2/c2)i(t-r) dr  

with R = (x;+a$. The integrand evidently has an integrable singularity at r = 
t-R/c. Following Ffowcs Williams (1969), we expand the other terms in the 
denominator of the integrand about this value of r .  This procedure shows that, for 
large R,  

1 
large R,  

p ' (x , t )  = 
1 

p' (x , t )  = (3.26) 

The integral has been evaluated numerically and the function 

is plotted in figure 6 for discrete values of t .  The graphs show that this non- 
dimensional function is of order unity. It varies rapidly and has its maximum 
magnitude at times near t = -l/Um, the time a t  which the vortex passes the leading 
edge of the LEBU. We see then from (3.26) that p'(x,  t )  is significant for times in the 
range R/c-2Z/Ua to R/c and that it is then of order 

(3.27) 
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FIGURE 6. Plots of 

for moderate or large h/E. (a) 6 = 0.51, (b)  b = 0.252, (c) 6 = 0.11. 

It is interesting to compare the distant pressure perturbation with and without the 
LEBU. It is apparent from (3.16) that in the absence of a LEBU, the far-field 
pressure is proportional to the small eccentricity, 8, of the vortex core. All vortical 
elements satisfying Taylor's hypothesis are silent. When the vortex is convected past 
a LEBU even vorticity that convects without change generates sound as it exerts 
an unsteady suction on the plate. A comparison of (3.16) and (3.27) shows that the 
LEBU enhances the distant pressure field by a factor E - ~ M - ~ ( W Z / U ~ ) - ~ .  Since both E 

and M are small this represents a considerable augmentation in the sound of a single 
eddy. 

4. A LEBU in a turbulent boundary layer 
The sound field produced by the convection of an idealized two-dimensional eddy 

past a LEBU was evaluated in $3. The exact solution of this simplified problem 
highlights the main noise source mechanism, and the physical insight obtained will 
now be applied to sound generation in a three-dimensional turbulent layer modified 
by a LEBU. 

Consider a LEBU of chord 21 and span 2L, positioned a t  a height h above the rigid 
wall x2 = 0. Again we enclose the LEBU by a control surface X. The half-space Green 
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function G ( y , ~ [ x , t )  in (3.6) may be used to write down a solution of the Ffowcs 
Williams-Hawkings equation (Ffowcs Williams & Hawkings 1969, equation (2.8)) to 
give 

Lighthill’s quadrupole source Tij simplifies to pwr vj  + (p’ - c2p’) S, in an inviscid fluid. 
p‘ denotes the density perturbation and is equal to p‘/c2 in an isentropic fluid in linear 
motion. The volume integral is to be taken over the positive y2  half-space external 
to the surface S. The fact that the normal component of velocity vanishes both on 
the plane y 2  = 0 and on the surface of the LEBU has been used in deriving (4.1). 

The observer’s position x will be taken to be in the far field, many chord lengths 
away from the LEBU, so that 1x1 is large in comparison with both the wavelength 
and ( y :  + y”,i as y varies over the surface of the LEBU. 1x1 is not necessarily large in 
comparison with L,  because the span of the LEBU may be considerable. 

Differentiation of the expansion for G(y, 7 1 x ,  t )  in (3.8) shows that 

while 

with again r = Jx- y3k l .  After substitution for the derivatives ofG(y,7) x ,  t )  in (4.1), 
we find the dipole term in the distant pressure field to be 

The dipole sound field evidently depends on the 1- and 3-components of the force 
exerted on the fluid by the LEBU. The surface normal component n, is only non-zero 
at  the cross-stream edges of the LEBU and so the 3-component of the force is small. 
Although n, is only non-zero at  the leading and trailing edges of the plate, the 
pressure a t  the leading edge is singular and even an infinitesimally thin plate exerts 
a thrust on the fluid. This leads to the main dipole sound. It is shown in Appendix 
C that the thrust per unit spanwise length is proportional to the square of the 
velocity fluctuations. We will denote the thrust/spanwise length of LEBU by F ( y 3 ,  t). 
Substitution for the force in (4.2) shows that 

Let j5d(x, w )  denote the Fourier transform of this dipole pressure field : 

jjd(x, w )  = p i ( x ,  t )  eiWtdt. (4.4) i 
The Fourier transform of (4.3) gives 

(4.5) 

and this can be used to calculate the power spectral density of the dipole pressure 
field, pd(x, 0) .  



212 A .  P .  Dowling 

For statistically stationary turbulence 

where the overbar denotes an ensemble average. After substitution from (4.5) this 
leads to 

P d ( X , W )  = -- ( - x1 1 JIL ’(Y3, w)p(Yi, w’)  $wr+o’r’)/c d Y3dYk (4.7 1 2n 2nc -L r2r” 

with r‘ = Ix- ykkl. Now for statistically stationary turbulence 

where 9 ( y 3 ,  E ,  w’) is the cross-power spectral density of F(y3, t )  ; 

The relationship in (4.8) shows that (4.7) reduces to 

An integral length scale, Z,, can be defined by 

(4.11) 

1, is comparable in magnitude with the turbulent correlation lengthscale and, 
provided that it is small in comparison with both 2L and the wavelength 2nc/w, 

(4.12) 

When the turbulence is homogeneous, 9 ( y 3 ,  0, w )  is virtually independent of y3 along 
the length of the LEBU and Pd(x, w )  becomes 

(4.13) 

The y3 integral is of standard form (see Gradshteyn & Ryzhik 1980, p. 66) and we 

Pd(X, w )  = p) 9 ( 0 , 0 ,  - w ) I ( x ,  L ) ,  (4.14) 
finally obtain 2 

2nc 1 1  

where 

2R3I(x,L) = R(L - 53) R(L + x3) + tan-’ (9) L - x  + tan-’ ( L + x  y), 
RZ+ (L -23)2 + RZ + (L +x3)2 

(4.15) 

with, as before, R = (x:+xi)i. 
If L is small in comparison with 1x1, I ( x ,  L )  simplies to 2L/JxI4. But when L = R and 

(4.16) 
L 

x3 = 0, 

I ( x , L )  =-((‘+in). 
1x14 
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On the other hand, for L large in comparison with 1x1, 

a 
I(x,L) = -. 

2R3 
We can combine all these forms for I(x,L) together with (4.14) to give 

(4.17) 

(4.18) 

When the function 9 ( 0 , 0 ,  - w )  is rewritten in non-dimensional form we finally obtain 

(4.19) 

where velocity fluctuations have been non-dimensionalized with respect to the 
friction velocity, u,, and V,  is a typical eddy convection velocity. 

which becomes 

(4.20) 

(4.21) 

once (4.9) has been used to express 9 ( 0 , 0 ,  - w )  in terms of F(y,, t ) .  The calculation 
of F ( y 3 ,  t )  in Appendix C and the plots in figure 4 show F(y , ,  t )  to vary over a timescale 
EIU, and to be of order pou21, where u ia a typical velocity fluctuation. Qd(w1/Q) is 
therefore of the same order as the non-dimensional power spectral density of the 
function u2/u,2. 

The pressure spectrum of the dipole sound on the hard surface, x2 = 0, is caused 
by centred waves travelling over the surface from the LEBU with the sound speed. 
It scales in the way indicated in (4.19) and, in particular, decays with distance from 
the LEBU. 

A transducer mounted on the rigid surface x2 = 0 would detect the noise of the 
turbulent quadrupole sources, q, in equation (4.1), in addition to this centred dipole 
field. These quadrupoles are distributed throughout the boundary layer and generate 
sound whether or not a LEBU is present. Their sound field has been investigated 
in detail by Ffowcs Williams (1965, 1982). In particular the mean square of the 
quadrupole source strength is found to be proportional to the fourth power of the 
velocity fluctuations. The experiments of Westphal (1986), Bonnet et al. (1987), 
Coustols et al. (1987) and others have shown that these velocity fluctuations are 
significantly reduced by the introduction of a LEBU. In order to highlight this 
attenuation we shall follow these experimenters and scale the velocity fluctuations on 
u,, which has a peak reduction of between 8 and 23% downstream of a LEBU. We 
found in (4.19) that the distant surface pressure perturbation induced by the LEBU 
consists only of disturbances travelling over the surface with the sound speed. The 
installation of LEBUs therefore introduces no additional pressure fluctuations with 
supersonic wavenumbers and, for these spectral components, we can expect a 
reduction in flow noise due to the reduction in the strength of the turbulent sources, 

The installation of the LEBU increases the surface pressure spectrum for spectral 
elements with sonic phase speeds. To see whether the net effect of introducing 

T,, * 
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LEBUs is beneficial, we shall compare the dipole field in (4.19) with the flow noise 
a t  the acoustic wavenumber in the absence of LEBUs. Ffowcs Williams (1965) found 
that the surface pressure spectrum under a boundary layer of finite extent has a non- 
integrable singularity for spectral elements with sonic phase speeds. This singularity 
was analysed by Bergeron (1973) who showed that it arises due to a form of Olbers’ 
paradox, because the turbulent source region is considered to be of infinite extent 
and the sound field from each source element does not decrease rapidly enough with 
distance for the integrated effect to be finite. He demonstrated that when the source 
region has finite extent, D ,  the pressure spectrum is still singular but that the 
singularity is integrable. The strength of this singular field is given in a particularly 
convenient form by Ffowcs Williams (1982, equation (4.18)). Using his result, with 
the minor amendment discussed by Howe (1987), we find that the cross-power 
spectral density of the quadrupole surface pressure is given by 

where A is the boundary-layer thickness. @,(wA/U,) is a non-dimensional function 
arising from the power spectral density of Ti non-dimensionalized on u,. 

The power spectral density of the surface pressure can be determined by an 
integration of (4.22) over wavenumber : 

The &-function makes this integration straightforward and we obtain 

(4.23) 

(4.24) 

Sevik (1986) presents data which describe the functional form of @,(wA/U,). 
However this does not help us here because we wish to compare (4.24) with the dipole 
field in (4.19) and we have no data on the variation of @d(uZ/U,) with frequency. 
However a detailed study of Ffowcs Williams (1982) shows that 

(4.25) 

where V, is the integral correlation volume and u and /3 are summed over 1 and 3. In 
a low-Mach-number flow, the quadrupole source Tub reduces to the Reynolds stress 
pouUub and @,(wA/U,) depends on the power spectral density of the non-dimensional 
functions u,ub/u: and u2/u,“. We saw in (4.21) that @d(wZ/q)  involves a virtually 
identical power spectral density, and a comparison of (4.21) and (4.25) shows that 

V 
Qq - -pd. (4.26) 

The introduction of a LEBU leads to a reduction in the quadrupole pressure 
spectrum in (4.24) since it reduces the amplitude of the velocity fluctuations and 
decreases the integral lengthscale of the turbulence (Coustols et aZ. 1987). However, 
when the LEBU is present we also have a dipole sound field with a pressure spectrum 



Effect of large-eddy breakup devices on jlow noise 215 

described by (4.19). Equation (4.26) and a comparison of (4.19) and (4.24) show that 
this dipole field is negligible in comparison with the quadrupole field provided that 

(4.27) 

A typical LEBU has a chord of the order of the boundary-layer thickness, 21 - A .  
The turbulence integral length 1, also scales on the boundary-layer thickness and the 
integral correlation volume V, scales on A 3 .  Hence (4.27) simplifies to 

(4.28) 

At positions x on the surface that are sufficiently far from the LEBU for the 
inequality in (4.28) to be satisfied the contribution to the surface pressure spectrum 
from the dipole source is negligible in comparison with that from the quadrupole. The 
logarithm in (4.28) only varies slowly with its argument and is typically of order 
unity. 

Let us consider now an array of LEBUs mounted on a surface to produce global 
reductions in fluctuating velocity. This could be achieved by installing LEBUs which 
span the boundary-layer width and have an axial separation of, say, 1504. Such an 
arrangement would modify the turbulence and reduce the quadrupole components of 
the surface pressure spectrum. Provided that the dipole sound is less than this 
quadrupole field, this would lead to a reduction in the flow noise. It is apparent from 
(4.28) that such a reduction can only be obtained in a region midway between the 
LEBUs provided that 

.L 4.n 6 75($)p. (4.29) 

Hence, a t  frequencies less than c/30A the installation of LEBUs will increase the flow 
noise because they introduce new dipole sources which produce more intense sound 
than the quadrupole sources in an unmanipulated layer. The introduction of LEBUs 
could only have a beneficial effect and lead to local reductions in the surface pressure 
spectrum at radian frequencies which are large in comparison with c/3OA. Even then, 
if V, is significantly less than A3 for these high-frequency disturbances, (4.28) 
underestimates the relative magnitude of the dipole sound due to  the LEBUs and 
they may still have an adverse effect. 

5.  Conclusions 
The idealized problem of a two-dimensional elliptical vortex convected past a 

LEBU has been solved exactly in the low-Mach-number limit. The inner 
incompressible unsteady pressure is increased by the large factor Urn h / r  by the 
introduction of a LEBU. The augmented wall pressure is most intense directly 
underneath the LEBU, the maximum being below the 20% chord point. In  an 
unmanipulated flow the far-field pressure is proportional to the small eccentricity, E ,  

of the vortex core. All vortical elements satisfying Taylor's hypothesis are silent. 
When the vortex is convected past a LEBU even the frozen convected vorticity 
generates sound as it exerts an unsteady suction on the plate. The LEBU increases 
the distant acoustic pressure field by a factor E-~JI-'. Since both E and M are small 
this represents a considerable augmentation in the sound of a single eddy. 

When a LEBU is placed in a turbulent boundary layer, the suction force on the 
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LEBU generates dipole sound in addition to that produced by the Lighthill 
quadrupole sources distributed throughout the boundary layer. The dipole field 
decays with distance from the LEBU and we find that, at  positions sufficiently far 
from the LEBU that the inequality in (4.27) is satisfied, the pressures induced by the 
dipole field are negligible in comparison with those due to the volume quadrupoles. 

An array of LEBUs, mounted over a surface to produce global reductions in 
turbulent velocity, can only lead to local reductions in flow noise for radian 
frequencies much greater than c / 3 0 A .  

This work has been carried out with the support of Topexpress Ltd and the 
Procurement Executive, Ministry of Defence. 

Appendix A. Evaluation of inner incompressible surface pressure 
perturbation near a LEBU 

r, equation (2.16) leads to 
After differentiation with respect to time and linearization in the vortex strength 

This expression for the rate of change of velocity potential can be simplified. 

time shows that 
First note that differentiation of the circulation theorem in (2.12) with respect to 

1 “ i ( s ,  t )  ds = - [,f(y;, t )  dy’,. (A 2) 

Once (2.17) has been used to express yw in terms of ayw/as, the s-integral may be 
evaluated to give 

The last integral in the expression for the velocity potential, (A l),  may be simplified 
in a similar way. With yw replaced by - Urn ayw/i3s, a straightforward integration by 
parts leads to 

(A 4) 

It would be convenient to rearrange the second integral in (A 1) in a similar way. 
since a@/as = - h / ( ( y , - ~ - E ) ~ + h ~ ) .  

This can be done by introducing a new function g(yl, t) defined by 

The definition ensures that g( -1, t )  vanishes, and an integration by parts gives 
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Substitution from (A 4) and (A 6) into (A 1 )  leads to 

1 
+ ; W i , O I  8 ,  h) [g( l , t )  + umyw(O, t ) ] .  (A 7) 

It follows from the definition of g that 
1 

dl, t )  = f ( Y i ,  t )  did. I, 
The circulation theorem expressed in (A3)  therefore shows that the last term in 
(A 7) vanishes and 4 has quite a simple form. 

On y2 = 0, v2 is identically zero and, after linearization, vl in (2.15) simplifies to 

Substitution for 4 and v1 from (A 7) and (A 8) into the unsteady Bernoulli equation 
(2.6) leads to an expression for the surface pressure fluctuation: 

which is used in (2.18). 

Appendix B. Evaluation of the integrals in the representation for the 
distant pressure field 

We shall begin by evaluating the surface integrals in the representations 
(3.17) and (3.18) for the far-field pressure. These are of form J[n,r-2#]dS and 

[nr yj T - ~ # ]  ds, where r = Ix- y3 kl and the square brackets denote that the function 
they enclose is to be evaluated a t  retarded time t - r / c .  We shall evaluate these 
integrals in a similar way to the standard proof of the Blasius theorems (see for 
example Duncan, Thom & Young 1970). 

Consider first the complex integral 

[ (n2#- in1W,  (B 1 )  

where n denotes the inward normal and s is arclength around the two-dimensional 
body. We introduce the complex position variable z = y1+iy2. Then, for an 
incremental dz tangential to the body, 

dz = (n, - in,) ds, (B 2) 

and hence the integral in (B 1) can be written as 

(n, 4 -in, 9) ds = #J dz. f 
Since the body surface is a streamline, the stream function @ has a constant value, 
$c say, on the body and 

(B 4) 
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After combining (B 3) and (B 4) we obtain 

(n, $-in, $) ds = wdz, f 
where w(z) is the complex potential $ + i$. Equation (2.16) shows that near the plate 
and outside the vortex core this complex potential is given by 

i r  
2x w(z) = U .  z- - (In ( z  - yvl - iyvz) - In ( z  - yvl + iyVz)) 

i --s f(y;, t )  (In ( z  - yi - ih) - In ( z  - y; + ih)) dy; 
2n -1 

After substitution for w(z) from (B 6) into (B 5 )  we find that the z-integral involves 
terms of the form $ln (2-2’) dz. If z’ is outside the body this integral is identically 
zero, while for a position z’ within the body, the integral reduces to a branch-cut 
integral which can be readily evaluated. This leads to 

The imaginary part of (B 7) shows that 

n,$ds = 0, I 
and, after integration over y3, it follows that 

a result that we shall use later. 
The LEBU is positioned at  y, = h and so 

The s-integral has been evaluated as the real part of (B 7)  and shows that 

After integration by parts this becomes 

where the function g has been defined in (2.19). 
The final surface integral in the representation (3.18) for the far-field quadrupole 

pressure is 

This may be evaluated in a similar way by considering the complex integral 

z(n2 $ - in, $) ds. (B 14) 1 
Such a procedure shows that the integral in (B 13) vanishes. 
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We showed in (B 9) that 
J y d s  = 0. 

The dipole strength in (3.17) therefore only depends on the volume integral 
J ( [wz 0 3 ] / r 2 )  d3y. Vorticity is concentrated within the vortex core and the plate wake, 
and substitution for w3 from (2.13) and for the variation of v2 over the vortex core 
from (2.14) shows that 

w2 o3 dy, dy, = $9 H(a+sa cos (20 ,  -$t) -R,)R,(cos 0 , - s  cos (8,-$wt)) dy, dy, 

+TW2(YV(t), t )  +[8;oYw(s3 t )  W Z ( Y W ( S ,  4 9  t )  ds. (B 15) 

I I 
The first integral can be evaluated in a straightforward way and is found to be 
identically zero. When w2 is substituted from (2.14) and (2.15) into (B 15), two terms 
cancel to give 

+~[o~~w~~~~~[~~w~~~.t)o-E,(y,l  yk,, -yh)Ids’ds. 
(B 16) 

The function E,(y 1 y’) is defined by E,(y I y’) = (yl- y;)/((y, - Y’,)~ + (yz- ~ ‘ 2 ) ~ ) .  The 
symmetry in this expression shows that 

W Y I Y ’ )  = -E,(Y’lYL E,(Y,, -YzIY; ,  -YL) =E,(yIy’). (B 17) 

v2(y, t )  = 0 for -1  < y, < 1, yz = h. (B 18) 

Now, since the plate is impenetrable, the normal fluid velocity on it vanishes, i.e. 

The form for v2 in (2.15) and the relationships in (B 17) show that this condition is 
equivalent to 

W 

= f m  t, {A- (y, - yl-yy; y;)z + 4h2 }dy; for -1 < y, d 1. (B 19) 

This identity may be used to simplify the first two integrals in (B 16): 



After exchanging the names of the integration variables s and s’, the integral on the 
right-hand side of (B 22) is precisely the same as that defining I in (B 21). Hence 
combining (B 21) and (B 22) leads to 

I = - I ,  

I = 0. 
and we must conclude that 

The last integral in (B 20) vanishes. 
A similar argument shows that 

and (3.20) simplifies to 

The same argument cannot be applied to the integrals remaining in (B 26) because 
f has a singularity at  the leading edge and the y; integral exists only as a principal 
value. These integrals need to be evaluated explicitly. However, we note that, since 
the leading-edge singularity prevents the integral in (B 26) from being zero, we 
expect the integral to be proportional to Ai(t) ,  because A,(t) is the coefficient of the 
singular term in the Glauert series. 

Substitution for f in terms of its Glauert series (2.11) enables the remaining 
integrals in (B 26) to be evaluated explicitly. It shows that 

where cos 8 = - yl/l and the Glauert integral 

x sin no d e = -  cos no‘ F a COSe,-cos8 sin 8 

has been used. Finally, after multiplying the right-hand side of (B 27) by the Glauert 
series for f (yl, t )  and integrating with respect to yl, we find 

As expected, the strength of the dipole is proportional to Ai(t)  and leads to a sound 
field 

This result is used in (3.19). 
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We now turn our attention to the quadrupole sound in (3.18). Since we already 
have a second-order dipole we shall only evaluate the quadrupole source strength to 
first order in r. The integrals over the surface of the LEBU have already been 
evaluated. In particular, from (B 12) and (B 13) we have 

and 

The volume integrals describing the quadrupole source strength simplify 

(B 32) 

considerably when they are linearized. To lowest order in r, we find that 

while y, v1 o3 dy, dy, = Um(h+ b) r+ Urn h I 
The circulation theorem expressed in (2.12) enables the total vorticity in the wake to 
be expressed in terms of the circulation around the plate, so that 

[Y2w1w3dy1dY2 = Um(h+b)r -Umh L f(yl,t)dyl* (B 34) 

Substitution of (B 30) and (B 34) into (3.18) shows that the quadrupole is in the 
2-2 direction, and leads to a pressure field 

a result that is used in (3.20). 

Appendix C. Evaluation of the unsteady force on the LEBU 
The forces exerted on an isolated plate in a gust have been considered extensively 

(see for example Glauert 1929; Sears 1940; Jones 1957). In  our geometry the plate 
or LEBU is positioned above an infinite plane wall, but nevertheless we can obtain 
simple expressions for the force. Let (X, Y )  denote the force exerted on the fluid by 
unit spanwise length of LEBU. Then 

L 

Y+iX = - (n,+in,)pds. J 
The unsteady form of Bernoulli's equation shows that in this inner incompressible 
flow 

p = -p,~-&,,v~+oonstant. at (C 2) 

When this is used to substitute for the pressure, the integral in (C 1) can be written - - 

in complex form as 

Y+iX = iw+&oj6(!!ydz, 

where the overbar denotes a complex conjugate. We have already considered the first 
integral in this equation (see (B 5 )  and (B 7)). When w in (B 6) has been differentiated 

8.2 
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with respect to z, the second integral has a straightforward form and can be readily 
evaluated to show that 

The condition that the plate is impenetrable, expressed mathematically in (B 19), 
enables this integral to be simplified to 

This integral was evaluated in Appendix B where the steps between (B26) and 
(B 28) show it to be equal to poxf2Ai( t ) /8Z.  The plate exerts a thrust on the fluid, 
proportional to the square of the oncoming velocity fluctuations. 

After linearization in f, the strength of the oncoming vortex, the real part of 
(C 3) shows that 

The leading term in the unsteady lift force depends linearly on the velocity 
fluctuations. 
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